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Contemporary global warming versus climate change in the Holocene

Leszek Marks'

Abstract Cyclical climate change is characteristic of the Holocene, with successive warmings and
coolings. A solar forcing mechanism has steered Holocene climate change, expressed by 9 cooling phases
known as Bond events. There is reliable geological evidence that the temperatures of most warming phases
in the Holocene were globally higher or similar to that of the current warming period, Arctic sea ice was less
extensive and most mountain glaciers in the northern hemisphere either disappeared or were smaller.
During the African Humid Period in the Early and Middle Holocene, much stronger summer monsoons
made the Sahara green with growth of savanna vegetation, huge lakes and extensive peat bogs. The modern
warming is part of a climatic cycle with a progressive warming after the Little Ice Age, the last cold episode

of which occurred at the beginning of the 19" century. Successive climate projections of the Intergovernmen-
tal Panel on Climate Change are based on the assumption that the modern temperature rise is steered exclusively by
the increasing content of human-induced CO, in the atmosphere. If compared with the observational data, these projected

temperatures have been highly overestimated.
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Modern global warming is expressed by rising air tem-
perature on the Earth since the termination of the Little Ice
Age (LIA), that is, during the last 200 years. A cyclic be-
haviour of various climate parameters has modified
the warming rate and the rise of temperature was frequent-
ly interrupted by stability phases or coolings. In turn, these
have stimulated changes in other climate parameters as well
as modified natural processes and the human economy.

Both in scientific and public circulation, the idea of
global anthropogenic warming predominates. It has been
primarily postulated by the Intergovernmental Panel on Cli-
mate Change (IPCC), founded in 1988 by the World Mete-
orological Organization and the United Nations Environment
Programme to assess the risk of human influence on climate
change. According to IPCC, the phenomenon of the modern
warming has been caused by the increasing content of CO,
in the atmosphere due to the burning of fossil fuels. This is
believed to force sea level rise, glacier melting, ocean acid-
ification, more frequent and more intensive extreme weath-
er phenomena (hurricanes, floods and draughts) and massive
extinction of many species of flora and fauna. Such approach
makes IPCC predict catastrophic climate change, based on
climate models supplied with data of meteorological mea-
surements collected in climate databases of the National
Oceanic and Atmospheric Administration — National Cli-
matic Data Center (NOAA NCDC), Hadley Centre Climatic
Research Unit of the University of East Anglia in Norwich
(HadCRUT) and National Aenorautics and Space Adminis-
tration — Goddard Institute for Space Studies in New York
(NASA GISS).

The climate models have not been verified by their ap-
plication to reconstructions of past climate changes and this
makes the IPCC-presented climate change forecasts unbe-
lievable. The curve of reconstructed temperature in the last
millennium of the northern hemisphere, prepared by Mann
et al. (1998) and reproduced by IPCC (2001), obtained
the nickname ‘the hockey stick’ after its shape. This tem-

perature curve was heavily criticized both for major deficien-
cies in its palacoclimatic proxies and statistical methods used
to construct it (Mclntyre, McKitrick, 2003, 2005; Soon,
Baliunas, 2003; Montford, 2010; McShane, Wyner, 2011).
Despite its unreliability, the ‘hockey stick’ was included in
the last report of IPCC (2021), and it is also frequently and
thoughtlessly reproduced to this day by climate alarmists
and media.

This paper presents the current state of knowledge of
the climate change in the Holocene. The geological record
of the climate change in this epoch has been verified by
the results of archaeological, historical and meteorological
investigations (Marks, 2016). Determination of the steering
forces of modern warming is among the current scientific
priorities in the world and, therefore, geological input is
an important contribution to the discussion about human
impact on the climate.

RECORDS OF THE HOLOCENE
CLIMATE CHANGE

The accuracy of reconstruction of climate change depends
on the resolution of primary data and is incomparably smal-
ler if based on the geological rather than on the instrumental
meteorological record. In case of the geological data,
the resolution depends on factors such as the sedimentation
rate of deposits that supply information on climate in
the past. The sedimentation rate can be roughly estimated at
~3 ¢cm/1000 yrs in deep-sea sediments, and 30—50 cm/1000 yrs
at the continental slope. In lake sediments the sedimentation
rate is ~40 cm/1000 yrs whereas buildup of ice on the Ant-
arctic Ice Sheet equals ~4 m/1000 yrs and on the Greenland
Ice Sheet it is ~25 m/1000 yrs. The geological records en-
able reconstruction of some climate parameters only, includ-
ing mean annual and seasonal air temperature, mean
annual precipitation, composition of the atmosphere and
selected elements of atmospheric and oceanic circulation.
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Reconstructions of the mean temperature at the Earth’s sur-
face are generally based on a few hundred low-precision
uncalibrated proxy thermometers that provide a reading
once a decade to once a century or two at best. Addition-
ally, the occurrence of extreme climate events can be estab-
lished, but their geological record can be generally similar
to that of standard climate phenomena that last for a much
longer time.

The current interglacial of the Holocene started 11.7 ka
cal BP (Walker et al., 2018), with progressively increasing
human impact on the Earth’s environment, especially strong
during the past decades (Gibbard et al., 2021). Geological
examination of past climate changes is crucial to distinguish
the natural and the human-induced factors of the current
climate change. The most important climate-steering fac-
tor is solar radiation, subjected to cyclical changes caused
by the Sun’s activity that supplies with over 99% of
the energy that is responsible for the climate of the Earth.
Geological reconstructions show that rises and falls in the tem-
perature on the Earth are dependent on the sunspot cycles
(Table 1; Easterbrook, 2011; Usoskin ef al., 2016; Usoskin,
2023), and these in turn respond to the varying magnetic
activity of the Sun.

Parallel to a record of solar activity, 1000-year tempera-
ture cycles have been traced back through the Holocene,
based on proxy measurements in borehole cores of deep-sea

Table 1. Cycles of the Sun activity reflected by the number
of spots on its surface (after Vahrenholt, Liining, 2014)

Time interval
(years)

Mean duration
(years)

Names of sunspot
cycles

Schwabe 11 9-14

Hale 22 18-26

Gleissberg 87 6020

Suess/de Vries 210 180220

Eddy 1000 900-1100

Hallstatt 2300 2200-2400

10 8 6

-
N

sediments from the North Atlantic and compared to the GRIP
and GISP2 time scales of the Greenland ice cores (Bond
et al., 1997). Nine cold Bond Events were distinguished based
on ice-rafted debris (IRD) in the North Atlantic sediments,
reflecting substantial coolings and changes in ocean surface
circulation, indicated also by changing faunal assemblages.
They have also been detected in terrestrial deposits in many
regions of the world (Vahrenholt, Liining, 2014). Temperature
minima of these Bond Events (numbered from 8 to 0)
occurred at about 11.1, 10.3, 9.4, 8.2, 5.9, 4.2, 2.8, 1.4 and
0.4 ka BP (Fig. 1). They were found coincident with episodes
of low solar activity that corresponded to the combined
Eddy’s and Hallstatt’s solar cycles (Table 1).

The natural input of solar energy is transformed by dif-
ferent external and internal factors to modulate climate on
the Earth. Latitudinal insolation in the Holocene depended
on the Earth’s orbital parameters (Milankovi¢ cycles).
In comparison with the present values, summer temperatures
in the northern hemisphere were higher in the Early and
Middle Holocene (Beer, Van Geel, 2008; Beer, Wanner,
2012). Winter temperatures in the southern hemisphere were
higher in the Middle Holocene, followed by higher tem-
peratures in the northern hemisphere in the Late Holocene.
In the coming 3 ka, lower temperatures are expected eve-
rywhere, except for the intertropical zone where higher
winter temperatures are expected (Marks, 2016).

A stabilizing effect on the Earth’s climate in the Holo-
cene was the generally stable setting of oceans and conti-
nents, sea currents and large glacial bodies. Global thermo-
haline circulation, with weakening and strengthening epi-
sodes, is among the main driving forces, responsible for
heat transfer inthe oceans (cf. Labeyrie et al., 1987; Broe-
cker, Denton, 1989). The Atlantic Meridional Overturning
Circulation is an important component of the global ther-
mohaline circulation, with successive weakening and
strengthening episodes in the Holocene, interlinked in
the Pleistocene with glaciation phases of the northern con-
tinents and changes in the main oceanic currents (McManus
et al.,2004). Change in global temperatures, primarily con-
nected with variations in solar activity, influenced the at-
mospheric circulation patterns. Among them, the North
Atlantic Oscillation showed significant interdecadal vari-
ability that steered the climate, especially during winters
in the North Atlantic region, the Arctic and the subtropical
Atlantic Ocean (Hurrell et al., 2003).

The natural rhythm of climate change during the Holo-
cene was disturbed by large volcanic eruptions. Emission of
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Fig. 1. Climate change in the Holocene, adapted from Palacios et al. (2024a) and modified: warm periods are in yellow and less
warm in pale yellow, and cold in blue; Bond Events are after Bond ef al. (1997, 2001) and geochronology after Walker et al. (2019)
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dust into the atmosphere was responsible for a couple of cold
events during the Holocene (Shindell e al., 2003). Such erup-
tions can be detected by concentrations of SO, in polar ice
core records (Zielinski et al., 1994; Castellano ef al., 2004).
The extent of the vegetation cover had an important, but very
complex, effect on the climate (Foley ef al., 2003), because
the evaporative cooling by a forest mitigated warmings and
limited dust mobilisation (Bonan, 2008). The atmospheric
CO, concentration decreased in the Early Holocene and
started to increase since 7 ka, being independent of tem-
perature variations (Palacios et al., 2024a). Ocean-atmo-
sphere interchange was the main source of CO, until the
recent decades when the anthropogenic emission of CO,
became significant (Brovkin et al., 2019).

REGIONAL CLIMATE CHANGE
IN THE HOLOCENE

There were regional differences, expressed not only by
time-transgressive maxima and minima but also by opposite
trends in temperature (Beer, Van Geel, 2008; Beer, Van
Wanner, 2012). The Holocene Thermal Maximum (HTM)
is a period that extended from 9800—5700 BP and is well-
documented in the geological literature. The temperature
varied considerably in the Holocene, but its maximum val-
ues were reached in many areas, though not at the same
time. Geological data indicate that the HTM in central Eu-
rope occurred in the Middle Holocene (Fig. 1) and was ex-
pressed by a warm and stable climate, with mean annual air
temperature 1.0-3.5°C higher than the modern one (Renssen
et al., 2012; Kaufman et al., 2020). Based on pollen and
chironomid data from mid- and high-latitudes, the warmest
climate occurred at 7-5 ka cal BP, when summer tempera-
tures could be as much as 3—4°C higher than in the LTA
(Ptéciennik et al., 2011; Renssen et al., 2012; Luoto et al.,
2019; Kotrys et al., 2020). Such temperatures could be over
3 times higher than those presented by Kaufman et al. (2020)
and IPCC (2021), and so there is no confidence that tem-
peratures in the modern warming are higher than in the Mid-
dle Holocene (Vinds, 2022).

Arctic

At the beginning of the Holocene the Greenland Ice Sheet
was larger than at present, while the other northern ice sheets
(Laurentide, Scandinavian and Icelandic) were still extensive.
The temperature of surface sea water in the North Atlantic
was 1-5°C and on Spitsbergen 2°C higher than in modern
times (Mangerud, Svendsen, 2018). In southern Spitsbergen,
the strait along the present Hornsund Fiord was ice-free at
least from 10.9 to 3.9 ka cal BP (Osika ef al., 2022). Then,
the strait was closed but it became open again in the Me-
dieval Warm Period (MWP; 1.3-0.7 ka cal BP) when
the Hornsund glaciers receded. Subsequent glacier advanc-
es led to the strait’s closure in the LIA.

Studies of driftwood on the northeastern beach of
Greenland and other islands in the Canadian Arctic proved
(Dyke, Savelle, 2000; Funder ef al., 2011) that there were
several periods in the Holocene when there was no sea ice
nearshore, in turn making stranding of driftwood of spruce
from Canada or larch from Siberia possible. Reconstruction
of surface currents in the Holocene shows the travel routes
of driftwood in the Arctic Ocean, indicating a limited pack
ice in different sectors in summer, especially at 65, 4.5-2.5,
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2.0-1.8, 1.0-0.7 and since 0.2 ka cal BP. This coincides
with the melting phases noted in the Greenland Ice Sheet
cores (Westhoff et al., 2022).

Glacier advances

Glaciers advanced several times in the Holocene, namely
at: 10.0-8.8 ka (in many areas, but in the southern hemisphere
they were more extensive than during the LIA), ~8.2 ka, 7.3—
5.9 ka (2-3 advances), 5.1-4.2 ka (1-2 advances), 4.2-1.9 ka
(1-2 advances, in the southern hemisphere they were more
extensive than during the LIA), 1.9-0.9 ka (1-3 advances,
locally glaciers were more extensive than during the LIA),
0.9-0.1 ka (LIA, in Europe and North America maximal
extents in the Holocene), 1950-2000 (different areas). Due
to higher temperatures, glaciers completely or mostly disap-
peared before 6 ka in many regions of the northern hemi-
sphere (Palacios ef al., 2024a), ¢.g. in Scandinavia (Nesje,
Kvamme, 1991). A period of successive glacier rebuilding
and advances in the world since ~5 ka BP was named
the Neoglaciation (Denton, Porter, 1970).

Asian and African monsoons

Changes of summer insolation in the northern hemisphere
steered the monsoon intensity in Asia and Africa, and this
was reflected by a shift of the Intertropical Convergence
Zone at higher and lower latitudes (Wen et al., 2022; Pala-
cios et al., 2024a). The intensity of the Asian monsoon in-
creased progressively until it reached its northernmost extent
at 9.6-5.5 ka. This stabilized the climate in Asia during
the Middle Holocene, though it was interrupted by short and
sharp episodes of decreased monsoon intensity connected
with the Bond Events 9.4 and 8.2 ka (Wang ef al., 2005).
A weakening trend of the monsoon has begun since 5.5 ka,
with sharp decreases during the 4.2 and 2.8 ka Bond Events
(Fleitmann ef al., 2003) when many lakes in India and Chi-
na disappeared (Goldsmith et al., 2022). The monsoon be-
came stronger after 1.4 ka, reflecting temperature strength-
ening during the MWP, then it weakened during the LIA
and became stronger again in the modern warm period
(Gupta et al., 2003).

The West African Monsoon strengthened at the beginning
of the Holocene, reaching in summer the latitude 32°N (Fig. 2)
and this favoured the formation of huge lakes and extensive
peat bogs in the area of Sahara, accompanied by a drainage
network (Renssen et al., 2006; Chandan, Peltier, 2020; Men-
viel et al., 2021). The African Humid Period lasted for most
of the Middle Holocene, but the progressing decrease of in-
solation from 5 ka (De Menocal, 2015) made the Intertropical
Convergence Zone migrate southwards and caused deserti-
fication of the Sahara, reflected by a loss of vegetation cover
and increased dust content in the atmosphere (Renssen et al.,
2006; Burrough, Thomas, 2013; Menviel et al., 2021).

Climate change after
the Holocene Thermal Maximum

The temperature deduced from the oxygen isotope curve
in the Greenland ice core GISP2 shows that several warm-
ings occurred after the Holocene Thermal Maximum
(Fig. 1; Drake, 2012). These were periods during which great
progress in the development of human societies occurred:
Late Bronze Age, Roman Warm Period and the MWP.
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Fig. 2. North African precipitation (isohyets): A — the African Humid Period, B — the present day; black lines indicate location of
the Intertropical Convergence Zone in the northern hemisphere summer at ~8 and 4.2 ka BP, and modern (after Welc, Marks, 2014;

Palacios et al., 2024a, modified)

The separating cold Bond Events, named the Iron Age and
Dark Ages Cold Periods respectively, were expressed by
economic, intellectual and cultural decline. The temperature
history since 900 CE was based firstly on the estimated
climate history of central England (Lamb, 1977; IPCC,
1990). This showed a distinct warming of ~1.3°C when com-
pared with the LIA (Moberg et al., 2005; D’Arrigo et al.,
2006; Mann et al., 2009). This warming was a result of
natural processes, because human activity could not have
had any significant effect on temperature changes before
1900 CE. The Roman Warm Period (250 BC-450 CE),

the MWP (950-1250 CE) and the Modern Warming Period
reflect 1000-cycles with high solar radiation (Table 1; Vah-
renholt, Liining, 2014).

DISCUSSION

The claim of the IPPC (2021) that °...the latest decade
was warmer than any multi-century period after the Last
Interglacial, around 125,000 years ago’ ignores all the know-
ledge about reconstructed temperatures in the Holocene,
based on multi-proxy palaecoclimatic data.
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Despite the extensive northern ice sheets, the increased
summer insolation in the northern hemisphere caused
a warming trend from the beginning of the Holocene and
lasting until the Middle Holocene (Palacios et al., 2024a).
This warming trend was reversed from 65 ka onwards, due
to decreased summer insolation in the northern hemisphere.
Such general warming or cooling trends in the Holocene
were interrupted by short periods with opposite and abrupt
temperature changes (Fig. 1).

The African Humid Period is directly related to orbital
precession patterns, being when the Earth was closest to
the Sun (i.e. at perihelion) during summer in the northern
hemisphere (Shanahan et al., 2015; Menviel et al., 2021; Pala-
cios et al., 2024a). The maximum summer insolation in this
hemisphere reinforced the West African Monsoon to its
maximum providing high humidity in the Sahara, accom-
panied by an intensified Asian summer monsoon and com-
plemented by moisture coming from the Atlantic (Goldsmith
et al., 2022). This warmed the Mediterranean, high evapora-
tion of which brought winter rains in northern Sahara (Ched-
dadi et al., 2021), making farming in Egypt possible already
at the beginning of the Middle Holocene (Welc ef al., 2023).

A solar forcing mechanism as a steering force for
the Holocene climate change, expressed by the Bond Events
(Bond et al., 1997, 2001), has been completely neglected by
the IPCC (2001; Scafetta, Vahrenholt, 2023). Finally, Mann
et al. (2009) admitted that the MWP existed but to diminish
its significance considered it as the Medieval Climatic Anom-
aly, declared its local peculiarity limited to the North Atlan-
tic region, just as he considered the LIA to be only a Euro-
pean phenomenon. There are now dozens of scientific pub-
lications that show the pattern of the 1,000-year climate
cycles in the Holocene, occurring on all continents.
The MWP and the LIA occurred not
only in Europe (Palacios et al., 2024b)

a leading role of temperature, a rise of which was followed
in that time by a 6-month delay in the rise of CO, (Humlum
et al., 2012; Koutsoyiannis, Kundzewicz, 2020).

The official curve of the global mean annual temperature
anomalies based on regular measurements (https://data.giss.
nasa.gov/gistemp/graphs_v4/) overlaps slightly with the tem-
perature projections in reports of the IPCC (1990, 1995, 2001,
2007, 2014, 2021). These IPCC projections were created by
climate models, based on the assumption that the modern
temperature rise is steered exclusively by the increasing con-
tent of human-induced CO, in the atmosphere while the role
of water vapour as the main greenhouse gas is neglected
(cf. Hotyst, 2020). Such an approach makes the IPCC-pro-
jected temperature highly overestimated if compared with
the observational data (Fig. 3). Despite the lockdowns during
the Covid-19 pandemic in 20202021, connected with large
cutbacks in transport, travel, industrial production and en-
ergy generation, no reduction in atmospheric CO, was noted.
This fact suggests that the proposed reductions in global
energy use would be most probably highly ineffective in
limiting the level of atmospheric CO,.

CONCLUSIONS

The Holocene climate change was characterized by cycli-
cal warmings (such as: Holocene Thermal Maximum, Late
Bronze Age, Roman Warm Period, MWP) and coolings (Bond
Events: including Iron Age Cold Period, Dark Ages Cold
Period and LIA). The IPCC claims that current warming is
unprecedented in the last 2000 or even the last 125,000 years;
this statement is very unconvincing and it is not supported
by the geological data. There is good evidence that both in
the last 2000 years as well during the Holocene Thermal
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Fig. 3. Global estimates of mean annual temperature anomalies (1880-2023), based on
land and ocean data (https:/data.giss.nasa.gov/gistemp/graphs_v4/) and temperature pro-
jections to AD 2100 in the successive IPCC reports (1990, 1995, 2001, 2007, 2014, 2021)
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Maximum, temperatures were higher or broadly similar to
the ones in the current warming period, the Arctic sea ice
was less extensive and most mountain glaciers (especially
in the northern hemisphere) either disappeared or were
smaller. Much stronger summer monsoons in the Early and
Middle Holocene made the Sahara green with savanna veg-
etation, huge lakes and extensive peat bogs. The terms
‘the Holocene Thermal Maximum’ and ‘the Holocene Cli-
matic Optimum’ are avoided by the IPCC (2021), and its
popularized statements making the current warming look
‘unprecedented’ and therefore ‘unique’ are false and flatten
the climate history (cf. Marcott ef al., 2013).

The climate is a product of complicated interdependence
of many factors that have not been yet sufficiently recognized
qualitatively and quantitatively. It is a great scientific chal-
lenge that requires an extensive interdisciplinary research.
There is a crucial need to make climate science less political
and climate policy more scientific.
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